情感分析器

编辑:北方网互动百科 时间:2020-06-01 19:53:29
编辑 锁定
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
这是计算机世界的一个尚未开发的前沿:将各种人类情感转化成实实在在的数据。
起源
虽然之前也有一些相关工作,但目前公认的情感分析比较系统的研究工作开始于(Pang et al., 2002)基于监督学习(supervised learning)方法对电影评论文本进行情感倾向性分类和(Turney,2002)基于无监督学习(unsupervised learning)对文本情感情感倾向性分类的研究。Pang et al., 2002)基于文本的N元语法
中文名
情感分析器
外文名
Emotional analyzer
开始于
2002年
研究方法
监督学习

情感分析器概念

编辑
这是计算机世界的一个尚未开发的前沿:将各种人类情感转化成实实在在的数据。
起源
虽然之前也有一些相关工作,但目前公认的情感分析比较系统的研究工作开始于(Pang et al., 2002)基于监督学习(supervised learning)方法对电影评论文本进行情感倾向性分类和(Turney,2002)基于无监督学习(unsupervised learning)对文本情感情感倾向性分类的研究。Pang et al., 2002)基于文本的N元语法(ngram)和词类(POS)等特征分别使用朴素贝叶斯(Naive Bayes),最大熵(Maximum Entropy)和支持向量机(Support Vector Machine,SVM)将文本情感倾向性分为正向和负向两类,将文本的情感进行二元划分的做法也一直沿用至今。同时他们在实验中使用电影评论数据集目前已成为广泛使用的情感分析的测试集。(Turney ,2002)基于点互信息(Pointwise Mutual Information,PMI)计算文本中抽取的关键词和种子词(excellent,poor)的相似度来对文本的情感倾向性进行判别(SO-PMI算法)。在此之后的大部分都是基于(Pang et al., 2002)的研究。而相对来说,(Turney et al.,2002)提出的无监督学习的方法虽然在实现上更加简单,但是由于单词之间的情感相似度难以准确的计算和种子词的难以确定,继续在无监督学习方向的研究并不是很多的,但是利用SO-PMI算法计算文本情感倾向性的思想却被很多研究者所继承了.

情感分析器研究方法

编辑
监督学习
目前,基于监督学习的情感分析仍然是主流,除了(Li et al.,2009)基于非负矩阵三分解(Non-negative Matrix Tri-factorization),(Abbasi et al.,2008)基于遗传算法(Genetic Algorithm)的情感分析之外,使用的最多的监督学习算法是朴素贝叶斯,k最近邻(k-Nearest Neighbor,k-NN),最大熵和支持向量机的。而对于算法的改进主要在对文本的预处理阶段。
基于规则/无监督学习
和基于监督学习的情感分析相比,基于规则和无监督学习方面的研究不是很多。除了(Turney,2002)之外,(朱嫣岚 et al.,2002)利用HowNet对中文词语语义的进行了情感倾向计算。(娄德成 et al.,2006)利用句法结构和依存关系对中文句子语义进行了情感分析,(Hiroshi et al.,2004)通过改造一个基于规则的机器翻译器实现日文短语级情感分析,(Zagibalov et al.,2008)在(Turney,2002)的SO-PMI算法的基础上通过对于中文文本特征的深入分析以及引入迭代机制从而在很大程度上提高了无监督学习情感分析的准确率。
跨领域情感分析
跨领域情感分析在情感分析中是一个新兴的领域,目前在这方面的研究不是很多,主要原因是目前的研究还没有很好的解决如何寻找两个领域之间的一种映射关系,或者说如何寻找两个领域之间特征权值之间的平衡关系。对于跨领域情感分析的研究开始于(Blitzer et al.,2007)将结构对应学习(Structural Correspondence Learning,SCL)引入跨领域情感分析,SCL是一种应用范围很广的跨领域文本分析算法,SCL的目的是将训练集上的特征尽量对应到测试集中。(Tan et al.,2009)将SCL引入了中文跨领域情感分析中。(Tan2 et al.,2009)提出将朴素贝叶斯和EM算法的一种半监督学习方法应用到了跨领域的情感分析中。(Wu et al.,2009)将基于EM的思想将图排序(Graph Ranking)算法应用到跨领域的情感分析中,图排序算法可以认为是一种迭代的k-NN

情感分析器研究现状

编辑
情感分析自从2002年由Bo Pang提出之后,获得了很大程度的研究的,特别是在在线评论的情感倾向性分析上获得了很大的发展,目前基于在线评论文本的情感倾向性分析的准确率最高能达到90%以上,但是由于深层情感分析必然涉及到语义的分析,以及文本中情感转移现象的经常出现,所以基于深层语义的情感分析以及篇章级的情感分析进展一直不是很大。情感分析还存在的一个问题是尚未存在一个标准的情感测试语料库,虽然Bo Pang实验用的电影评论数据集以及Theresa Wilson等建立的MPQA是目前广泛使用的两类情感分析数据集,但是并没有公认的标准加以确认。
目前研究主要集中于情感词的正面负面分类,标注语料,情感词的提取等。

情感分析器文本情感分析的应用

编辑
文本情感分析的应用非常广泛,可以应用到许多行业,其中最重要的几个应用包括:实现情感机器人,自动提供抉择支持,网络舆情风险分析,信息预测等。